The alpha problem & line count configurations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the problem of divine hiddenness

این رساله به مساله احتجاب الهی و مشکلات برهان مبتنی بر این مساله میپردازد. مساله احتجاب الهی مساله ای به قدمت ادیان است که به طور خاصی در مورد ادیان ابراهیمی اهمیت پیدا میکند. در ادیان ابراهیمی با توجه به تعالی خداوند و در عین حال خالقیت و حضور او و سخن گفتن و ارتباط شهودی او با بعضی از انسانهای ساکن زمین مساله ای پدید میاید با پرسشهایی از قبیل اینکه چرا ارتباط مستقیم ویا حداقل ارتباط وافی به ب...

15 صفحه اول

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Quasi-configurations: building blocks for point-line configurations

We study generalized point – line configurations and their properties in the projective plane. These generalized configurations can serve as building blocks for (n4) configurations. In this way, we construct (374) and (434) configurations. The existence problem of finding such configurations for the remaining cases (224), (234), and (264) remains open.

متن کامل

Cyclic Configurations and the Reis Problem

Professor Richard H.Reis (South-East University of Massachusetts, USA) in 1978 put the problem:”Let a circumference is split by the same n parts. It is required to find the number R(n, k) of the incongruent convex k-gons,which could be obtained by connection of some k from n dividing points. Two k-gons are considered congruent if they are coincided at the rotation of one relatively other along ...

متن کامل

Iterated Point-Line Configurations Grow Doubly-Exponentially

Begin with a set of four points in the real plane in general position. Add to this collection the intersection of all lines through pairs of these points. Iterate. Ismailescu and Radoičić (2003) showed that the limiting set is dense in the plane. We give doubly exponential upper and lower bounds on the number of points at each stage. The proof employs a variant of the Szemerédi-Trotter Theorem ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2014

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2014.03.009